
International Journal of Heat and Mass Transfer 46 (2003) 4013–4021

www.elsevier.com/locate/ijhmt
Solidification of a supercooled liquid in stagnation-point flow
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Abstract

The solidification of a thermally supercooled liquid in stagnation-point flow is investigated. Due to the advancing

solidifying front, both the temperature and flow fields are time dependent. A numerical solution to the problem using an

interface tracking method is compared to analytical solutions obtained for instantaneous similarity (short time solution)

and quasi-steady state (long time solution). The results show that the velocity of the solid–liquid interface eventually

reaches a constant value and that the magnitude of the interface velocity increases with greater thermal supercooling.

The solution to this problem provides insight into more complicated solidification problems relating to crystal growth.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The behavior of the transient temperature field and

the solidification process is investigated for a super-

cooled liquid in the presence of forced convective flow.

The convective flow evaluated in this analysis is stag-

nation-point flow, which can be observed under such

conditions as a liquid poured into a mould, directional

solidification of a multi-component material at the onset

of thermosolutal convection, or buoyancy driven flows

[1–3]. Stagnation-point flow solidification has been in-

vestigated for homogeneous and multi-component ma-

terials [1,2,4–6]; however the behavior of the

solidification process is sensitive to the boundary con-

ditions. Due to the non-linearity of the boundary con-

ditions [7], analytical solutions to the governing

equations are limited and have been used in phase-

change problems in a semi-infinite domain without

convection [8,9]. In this study approximate analytical

and numerical methods are used to solve solidification in

a semi-infinite domain with convection, which can be

used as a basis in complex solidification problems such

as crystal growth.
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The numerical methods for solving the phase change

problem with moving boundaries have been categorized

into two types: the enthalpy method which treats the

enthalpy as a variable, and transformation methods in

which the position of the interface is tracked using the

heat balance equation at the solid–liquid interface [10–

12]. The enthalpy method has been shown to be more

accurate for materials with a range in phase-change

temperatures such as alloys. For a material with one

phase change temperature the enthalpy method has been

shown to contain inaccuracies near the phase-change

boundary [12]. Experiments and theoretical investiga-

tions of stagnation-point flow solidification in a semi-

infinite domain for a warm liquid in contact with a solid

layer have been conducted [4–6]. During solidification

under forced convection of this type, it has been dem-

onstrated that the thickness of the solid region reaches a

constant value. This finding was also observed in con-

vective flow of warm water parallel to a frozen layer [13].

The governing equations in this analysis are solved

using the analytical and numerical methods applied by

Bian and Rangel [5,6] to a similarly posed problem. In

the present problem, the solution methods provide in-

sight into the solidification of a thermally supercooled

liquid. In the mathematical formulation of this problem,

solidification occurs within a semi-infinite domain and it

is assumed that the material is homogeneous with con-

stant density in the solid and liquid phases. Analytical

solutions to the governing equations are available in the
erved.
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Nomenclature

A potential flow strain, s�1

cp specific heat, J/kgK

hsf specific latent heat of fusion, J/kg

s thickness of the solid phase, m

_ss dimensionless solid–liquid interface velocity,

d~ss=ds
~ss dimensionless solid phase thickness, s

ffiffiffiffiffiffiffiffiffi
A=al

p
Ste Stefan number, Ste ¼ cpðTm � TiÞ=hsf
T temperature, K

t time, s

u fluid velocity normal to the solid–liquid in-

terface, m/s

v fluid velocity tangent to the solid–liquid in-

terface, m/s

x spatial coordinate normal to the solid–liquid

interface, m

~xx dimensionless spatial coordinate, x
ffiffiffiffiffiffiffiffiffi
A=al

p
x0 transformed spatial coordinate in the finite

domain, 2=p tan�1ðx=sÞ
y spatial coordinate tangent to the solid–

liquid interface, m

Greek symbols

a thermal diffusivity, m2/s

b parameter used in numerical analysis

j thermal conductivity, W/mK

h dimensionless temperature, ðT � TiÞ=ðTm �
TiÞ

k solidification parameter, similarity solutions

k� solidification parameter, long time solution

g similarity variable

q density, kg/m3

n transformed spatial coordinate normal to

the interface, n ¼ x� sðtÞ, m
~nn dimensionless spatial coordinate, ~nn ¼

n
ffiffiffiffiffiffiffiffiffi
A=al

p
s dimensionless time, At

Subscripts

i far field

l liquid phase

m solid–liquid equilibrium

s solid phase
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small time and quasi-steady state regimes. The numeri-

cal method used in this analysis is an interface tracking

method in a transformed coordinate system.
Fig. 1. Stagnation-point flow solidification of a supercooled

liquid in a half-space.
2. Problem description

During solidification of a supercooled liquid in a

half-space, the initial temperature of the liquid, Ti, is
below the melting temperature of the homogeneous

material, Tm, as shown in Fig. 1. The solid phase is

maintained at the equilibrium solidification temperature.

In the liquid region, the flow field is decoupled from the

thermal field by assuming constant density and no vis-

cous dissipation. However, since the solidification front

is moving with respect to time, the thermal field and the

flow field are not fully independent of one another.

For materials such as metals, the Prandtl number is

very small resulting in a thermal boundary layer that is

much larger than the viscous boundary layer. For

stagnation-point flow of a material with a very small

Prandtl number, the viscous effects are negligible and the

potential flow field approximation maybe used. The

quasi-steady solution of the inviscid two-dimensional

stagnation flow field becomes,

u ¼ �2Aðx� sðtÞÞ; ð1Þ

in the x direction (normal to the interface), and

v ¼ 2Ay; ð2Þ
in the y direction parallel to the interface. The potential

flow field is shown in Fig. 1.

Because the temperature in the solid phase is main-

tained constant, the governing equation is the two-

dimensional energy equation in the liquid phase,
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oTl
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þ u
oTl
ox
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oTl
oy

¼ al

o2Tl
ox2

�
þ o2Tl

oy2

�
: ð3Þ

When the solidifying front is planar, heat transfer occurs

in one direction and Eq. (3) reduces to the one dimen-

sional transport equation,

oTl
ot

þ u
oTl
ox

¼ al

o2Tl
ox2

: ð4Þ

The velocity and position of the advancing interface is

found by solving the heat balance equation at the liquid–

solid interface,

qhsf
ds
dt

¼ �jl

oTl
ox

����
x¼sðtÞ

: ð5Þ

It is evident from the flow field equations (1) and (2)

that the velocity normal to the interface is a function of

the position of the moving interface. The changing

boundary condition at the interface leads to a temper-

ature field that is dependent upon the flow field. Nu-

merical methods are used to solve Eq. (4). The behavior

of the thermal field is investigated analytically by look-

ing at the long time behavior and an instantaneous

similarity solution as time approaches zero.
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Fig. 2. Relationship between the Stefan number and the soli-

dification parameter derived from the heat balance equation at

the solid–liquid interface for the instantaneous similarity solu-

tion and the long time solution.
3. Long time solution

The stagnation-point flow transports the liquid with

an initial far field temperature, Ti, toward the solidifying

front, which is at the melting temperature of the mate-

rial. After a long time, the temperature gradient in the

liquid is expected to reach a constant value. In the ab-

sence of stagnation-point flow, Carslaw and Jaeger [8]

show that the velocity of the advancing solid–liquid in-

terface is proportional to t�1=2. In this problem, with the

addition of stagnation-point flow, the velocity of the

solidifying front, ds=dt, is expected to be a constant in-

dependent of time as the thermal field approaches steady

state.

The long time solution is found by assuming that the

system has reached quasi-steady state. The interface

velocity is determined using Eq. (5), the heat balance

equation at the solid–liquid interface. The one dimen-

sional energy transport equation,

oTl
ot

� 2Aðx� sðtÞÞ oTl
ox

¼ al

o2Tl
ox2

; ð6Þ

is transformed to a coordinate system moving with the

solid–liquid interface,

A
oTl
os

� A
ds
ds

�
þ 2An

�
oTl
on

¼ al

o2Tl
on2

: ð7Þ

In dimensionless form, the steady state equation be-

comes,
o2Tl
o~nn2

þ d~ss
ds

 
þ 2~nn

!
oTl
o~nn

¼ 0: ð8Þ

Eq. (8) is solved using boundary conditions in the far

field and at the solid–liquid interface. The boundary

conditions are Tl ¼ Ti as x approaches infinity, and

Tl ¼ Tm at the interface x ¼ sðtÞ. The liquid temperature

profile of the long time solution is,

hl ¼
Tl � Ti
Tm � Ti

¼
erfc ~nn þ _ss

2

 !

erfc
_ss
2

: ð9Þ

The condition at the solid–liquid interface, Eq. (5), is

expressed in dimensionless form,

_ss ¼ �Ste
ohl

o~nn

����
~nn¼0

; ð10Þ

where the Stefan number, Ste, is a measure of the

amount of thermal supercooling in the liquid phase.

Combining Eqs. (9) and (10), the velocity of the

solid–liquid interface is expressed as,

_ss exp
_ss
2

 !2

erfc
_ss
2
¼ 2ffiffiffi

p
p Ste: ð11Þ

Eq. (11) confirms the initial assumption that, after a long

time, the velocity of the solidifying front is constant.

Therefore, the relationship between the thickness of the

solidifying front, ~ss, and time is linear and can be ex-

pressed in terms of a constant,

~ssðsÞ ¼ 2k�s; ð12Þ
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Fig. 3. Long time solution of the temperature profile in stag-

nation-point flow solidification for values of the Stefan number.
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where k� ¼ ~ssðsÞ=2s is a solidification parameter for the

long time solution with a factor of 2 introduced for

convenience. In Eq. (11) the speed of the moving front

depends upon the amount of thermal supercooling in the

fluid, as indicated by the Stefan number. A graph of the

parameter k� versus the Stefan number is shown in Fig.

2. The figure shows that as the Stefan number ap-

proaches 1, the terminal velocity of the solid–liquid in-

terface approaches infinity. The Stefan number is thus

limited to values less than 1.0. Beyond this value, no

solution can be found for Eq. (11) which indicates that

the liquid could not be maintained in such high level of

supercooling and would freeze instantaneously.

The quasi-steady temperature profile in the liquid

phase, derived from the long time solution is shown in

Fig. 3 for different values of the Stefan number. Fig. 3

shows that the temperature gradient increases as the

amount of thermal supercooling in the liquid region

increases.
4. Instantaneous similarity solution

Instantaneous similarity is analogous to the concept

of local similarity in a flow field, where a solution is

independent of the position along a streamline and is

‘‘locally autonomous’’. Using a similarity variable, the

partial differential equation (4) is transformed into an

ordinary differential equation in a new coordinate sys-

tem. Bian and Rangel [6] have applied the concept of

instantaneous similarity in stagnation-point flow solidi-

fication to find solutions at very small times. During our

earlier derivation of the long time solution, the coordi-

nate system was placed at the moving solid–liquid in-
terface. For instantaneous similarity, the coordinate

system remains at the wall. The similarity variable used

in this analysis is,

g ¼ ~xx
2
ffiffiffi
s

p ; ð13Þ

and we define a solidification parameter based on the

non-convective solution [8] as,

k ¼ ~ss
2
ffiffiffi
s

p : ð14Þ

The energy equation (4) expressed in terms of the new

variables is,

s
oTl
os

� g
2

�
þ 2sðg � kÞ

	 oTl
og

¼ 1

4

o2Tl
og2

: ð15Þ

In instantaneous similarity, the derivatives with respect

to time are set to zero and Eq. (15) becomes,

1

4

o2Tl
og2

þ g
2

�
þ 2sðg � kÞ

	 oTl
og

¼ 0: ð16Þ

The liquid phase temperature is derived using the fol-

lowing boundary conditions: Tl ¼ Tm at the solid–liquid

interface and Tl ¼ Ti as g approaches infinity. From the

solution in Eq. (16), the temperature profile in the liquid

phase is expressed as,

hl ¼ erfc
4sðg � kÞ þ gffiffiffiffiffiffiffiffiffiffiffiffiffi

4s þ 1
p

� �

erfc

kffiffiffiffiffiffiffiffiffiffiffiffiffi
4s þ 1

p
� �

: ð17Þ

The condition at the solid–liquid interface, Eq. (5), ex-

pressed in terms of the new coordinate system is,

d~ss
ds

¼ � Ste

2
ffiffiffi
s

p ohl

og
: ð18Þ

Combining Eqs. (17) and (18), the solidification pa-

rameter is expressed as a function of time,

k exp
kffiffiffiffiffiffiffiffiffiffiffiffiffi

4s þ 1
p

� �2

erfc
kffiffiffiffiffiffiffiffiffiffiffiffiffi

4s þ 1
p

� �
¼ Steffiffiffi

p
p : ð19Þ

When s ¼ 0, Eq. (19) reduces to the classic equation

[8] for solidification of a supercooled liquid in the ab-

sence of convection. This finding is similar to the in-

stantaneous similarity results of Bian and Rangel [6], for

a stagnation-flow solidification problem of a super-

heated liquid. Fig. 2 shows the relationship between the

Stefan number and values of the solidification parame-

ter, k, for values of s ranging from 0.005 to 0.1. Simi-

larly, as the solidification parameter increases, the Stefan

number approaches a maximum value above 1, which is

only valid for a range in small time values. As the value

of s increases, the maximum Stefan number increases

until the instantaneous similarity solution no longer

describes the behavior of the temperature profile. A

range of values for the solidification parameter, k, the



Table 1

Conditions at the solid–liquid interface for the instantaneous

similarity solution

s Stefan

number

k _ss ~ssðsÞ

0.005 0.1 0.060 0.853 0.009

0.2 0.130 1.83 0.018

0.4 0.309 4.37 0.044

0.6 0.588 8.31 0.083

0.9 1.845 26.1 0.261

0.01 0.1 0.060 0.602 0.012

0.2 0.130 1.30 0.026

0.4 0.308 3.08 0.062

0.6 0.583 5.83 0.117

0.9 1.770 17.7 0.354

0.05 0.1 0.060 0.27 0.027

0.2 0.128 0.57 0.057

0.4 0.300 1.34 0.134

0.6 0.551 2.47 0.247

0.9 1.409 6.30 0.630
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interface velocity, _ss, and the thickness of the solid re-

gion, ~ssðsÞ, are listed in Table 1. As s increases, the in-

terface velocity and thickness increase, while the value of

the solidification parameter decreases. For increasing

values of the Stefan number, the values of these interface

parameters increase for any value of time, s.
The temperature profile at s ¼ 0:005 for different

values of the Stefan number is illustrated in Fig. 4. The

figure shows that as the Stefan number increases the

temperature gradient in the liquid phase increases.
Distance,

T
em

pe
ra

tu
re

,

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

Ste = 0.1
Ste = 0.2
Ste = 0.4
Ste = 0.6
Ste = 0.9

∼

τ = 0.005

θ l

ξ

Fig. 4. Temperature profile of the instantaneous solution in the

liquid phase when s ¼ 0:005. The temperature is plotted over a

range of Stefan numbers that is less than the maximum Stefan

number.
5. Numerical solution

Analytical methods were used above to solve the

energy equation for the quasi-steady state and short time

solutions. For the unsteady temperature profile in the

liquid phase, the numerical methods used by Bian and

Rangel [5] to solve stagnation flow solidification in a half

space are used to solve the transport equation (4). To

solve the full transport equation in a semi-infinite do-

main, Bian and Rangel transformed the coordinate

system into a finite domain using a trigonometric

transformation. In order to resolve the moving bound-

ary, the position of the solid–liquid interface is derived

from the heat balance equation (5), at the solid–liquid

interface. The results of the numerical analysis are

compared with the instantaneous similarity and long-

term solutions.

In the analysis, solidification takes place in a semi-

infinite domain. The governing equations (4) and (5), are

transformed into a new coordinate system ðx0; sÞ, such
that the semi-infinite domain becomes bounded between

0:56 x0 6 1 with x0 ¼ 0:5 at the solid–liquid interface.

For a fixed value of x0, the coordinate in the semi-infinite

domain, x, moves farther away from the solid–liquid

interface as s increases. The relationship between x0 and
x shows that while the coordinate system remains fixed

in the numerical analysis, the values derived for the

temperature field are moving farther from the interface

in the semi-infinite domain as time increases.

The transformations are as follows:

o

ot
¼ A

o

os
� A

p
sinðpx0Þ 1

~ss
d~ss
ds

o

ox0
; ð20Þ

o

ox
¼ 2

p

ffiffiffiffi
A
al

r
cos2

p
2
x0

� 	 1
~ss

o

ox0
; ð21Þ

and

o2

ox2
¼ � 2A

pal

sinðpx0Þ cos2 p
2
x0

� 	 1

~ss2
o

ox0

þ 4A
p2al

cos4
p
2
x0

� 	 1

~ss2
o2

ox02
: ð22Þ

Substituting Eqs. (20)–(22) into Eqs. (4) and (5), the

energy transport and the heat balance equations are

expressed as,

ohl

os
¼ 4

p2
cos4

p
2
x0

� 	 1

~ss2
o2hl

ox02
þ 1

p
sinðpx0Þ _ss

~ss

 

þ 2

p
sinðpx0Þ � 4

p
cos2

p
2
x0

� 	

� 2

p
sinðpx0Þ cos2 p

2
x0

� 	 1

~ss2

!
ohl

ox0
ð23Þ

and
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� p~ss
Ste

_ss ¼ ohl

ox0

����
x0¼0:5

ð24Þ

for 0:56 x0 6 1.

The energy transport equation (23) is transformed

into algebraic form using the Crank–Nicolson scheme

[14]. Expressed in finite-difference form, Eq. (23) be-

comes,

hnþ1
j � hn

j

Ds
¼ A

2

hnþ1
jþ1 � 2hnþ1

j þ hnþ1
j�1

Dx02

 
þ

hn
jþ1 � 2hn

j þ hn
j�1

Dx02

!

þ B
2

hnþ1
jþ1 � hnþ1

j�1

2Dx0

 
þ

hn
jþ1 � hn

j�1

2Dx0

!
; ð25Þ

where

b ¼ ~ss2; ð26Þ

A ¼ 4

p2
cos4

p
2
x0j

� 	 1

bnþ1
; ð27Þ

B ¼ 1

2p
sinðpx0jÞ

1

bnþ1

db
ds

nþ1

þ 2

p
sinðpx0jÞ �

4

p
cos2

p
2
x0j

� 	

� 2

p
sinðpx0jÞ cos2

p
2
x0j

� 	 1

bnþ1
: ð28Þ

The superscript n refers the number of time iterations

while the subscript j refers to the position along the

finite difference grid in the x0 direction. Eq. (25) is

rewritten as,

�ðd1 þ d2Þhnþ1
j�1 þ ð1þ 2d1Þhnþ1

j � ðd1 � d2Þhnþ1
j�1

¼ ðd1 þ d2Þhn
j�1 þ ð1� 2d1Þhn

j þ ðd1 � d2Þhn
j�1; ð29Þ

where

d1 ¼
ADs
2Dx02

; ð30Þ

and

d2 ¼
BDs
4Dx0

: ð31Þ

The Thomas algorithm [15] is used to solve the tri-

diagonal matrix in Eq. (29) for the following boundary

conditions,

hl ¼ 1 at x0 ¼ 0:5 ð32Þ

and

hl ¼ 0 at x0 ¼ 1:0: ð33Þ

The heat balance equation at the liquid–solid inter-

face, Eq. (24), is transformed into a semi-discrete form

with a time derivative on the left and the algebraic flux

terms on the right. The ordinary differential equation is,
f n ¼ db
ds

� �n

¼ � 2Ste

p
ð�hn

3 þ 4hn
2 � 3hn

1Þ
2Dx0

; ð34Þ

where f , is the flux term. The flux is only calculated at

the solid–liquid interface using the temperature values at

first three nodes of the finite difference grid. An im-

proved Euler scheme is used to solve for the conditions

at the interface, such as the variable position of the

solid–liquid interface, b, and the interface velocity, _ss,
and is expressed as,

b� ¼ bn þ Dsf n: ð35Þ

The value of b� is used in Eq. (29) to obtain a new value

for the flux, f � in Eq. (34). The value for b at the new

time step, nþ 1, is,

bnþ1 ¼ bn þ 0:5Dsðf � þ f nÞ: ð36Þ

The process of using Eqs. (34) and (35) to determine

the values of the flux, f , and the parameter, b, at the new
time step is repeated until the change in the values of the

time varying solutions are less than a tolerance error,

e ¼ 10�4. In the numerical analysis it was observed that

decreasing the tolerance level did not result in significant

changes in the final numerical predictions and only in-

creased the process time. The accuracy of the numerical

solution is determined by comparing the numerical

predictions of the quasi-steady state interface velocity

with the value from the long time solution in Eq. (11).

Initially, grid spacing of Dx0 ¼ 0:01 and a time step of

Ds ¼ 10�4 were used, however, for Stefan numbers

greater than 0.1, values of the grid spacing, Dx0 ¼
0:0025, and the time step, Ds ¼ 10�5, resulted in im-

proved convergence of the numerical solution. For

smaller grid spacing and time step values, the numerical

accuracy of the solution did not improve and the solu-

tion had a tendency to diverge.
6. Results

At s ¼ 0, the parameter, b, is zero leading to a sin-

gularity in Eq. (25) at the first time step. Bian and

Rangel [5] avoid the singularity by beginning the nu-

merical analysis at a small time s ¼ s0, with an initial

temperature profile calculated from the instantaneous

similarity solution. In this analysis, Eqs. (14), (17), and

(19) derived in the instantaneous similarity solution, are

used to calculate the position of the interface, ~ss, and the

initial temperature profile at a small initial time value,

s0. The initial temperature profiles and the numerical

solution of Eq. (23) are shown in Fig. 5 for a Stefan

number of 0.4 (Fig. 5a), and for a Stefan number of 0.9

(Fig. 5b). Fig. 5a and b show the numerical solution at

s ¼ 1:0 using three different values of the starting time,

s0 ¼ 0:005, 0.01, and 0.05, used for the initial tempera-
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Fig. 5. Comparison between the numerical solution of the

temperature field at s ¼ 1:0 and the initial liquid temperature

profile calculated using the instantaneous similarity solution for

initial time values ranging from 0.005 to 0.05 for (a) a Stefan

number of 0.4 and (b) a Stefan number of 0.9.
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ture profile in the instantaneous similarity equations.

The graphs show that the numerical results are not

sensitive to the initial time value as long as the instan-

taneous similarity assumption remains valid, confirming

an observation made by Bian and Rangel [5]. The

graphs also illustrate that this observation does not

change with the Stefan number. Since the numerical

solution is not sensitive to the initial time value, a value

of s0 ¼ 0:01 is used in the numerical analysis. Fig. 5

shows that this value of s0 is sufficiently small and has no

relevant impact on the numerical solution.

The numerical calculations of the velocity of the

solid–liquid interface, _ss, versus time is shown in Fig. 6
for different values of the Stefan number. The interface

velocity decreases in time until a constant velocity is

reached. For increases in the Stefan number, the velocity

of the solid–liquid interface increases at any given time.

This result illustrates that the solidification process is

faster for increases in thermal supercooling. When the

time value is 2, Fig. 6 illustrates that steady state in the

liquid region, or constant interface velocity, has been

reached for the range of solidification parameters shown

in the graph. The numerical calculation of the constant

interface velocity is compared to the value calculated

from the long time solution in Eq. (11) in Table 2 and in

Fig. 6 at s ¼ 2. The difference between the interface

velocity calculated using the numerical solution and Eq.

(11) ranges from 0.08% to 4% with increasing numerical

error for higher values of the Stefan number.

Fig. 7 shows the unsteady temperature profiles de-

rived in the numerical analysis for a Stefan number of

0.4 (Fig. 7a) and 0.8 (Fig. 7b). As the Stefan number

increases, the temperature gradient in the liquid phase

increases, following the trends observed in the previous

analytical analyses (quasi-steady and instantaneous

similarity solutions). The temperature profiles derived

from the numerical analysis are given for s ¼ 0:1, 0.2,
0.4, 0.6, and 0.8. The temperature profiles for the in-

stantaneous similarity solution at s ¼ 0:01 and the long

time solution at s ¼ 1:0, are included in the figures. The

results from the numerical analysis show that as time

increases, the unsteady temperature profile approaches

the quasi-steady state solution expressed in Eq. (9) for a

moving frame of reference, ~nn. The time for the temper-

ature field to reach quasi-steady state, increases slightly

as the Stefan number increases.
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Fig. 7. Numerical solution of the temperature profile in the

liquid phase for (a) Ste¼ 0.4 and (b) Ste¼ 0.8. The numerical

solution converges to the long time solution.

Table 2

Conditions at the solid–liquid interface after a long time

Stefan number Long time solution Numerical solution % Error, _ss

k� _ss, Eq. (11) _ss

0.1 0.060 0.121 0.121 0.08%

0.2 0.130 0.260 0.260 0.00%

0.4 0.310 0.620 0.620 0.03%

0.6 0.593 1.186 1.187 0.1%

0.9 1.930 3.860 3.706 4.0%
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7. Conclusion

Stagnation-point flow solidification of a supercooled

liquid in a half space was solved using analytical and
numerical methods. The viscous effects for a material

with a high Prandtl number are negligible, allowing the

potential flow field assumption. An evaluation of the

long time solution, or quasi-steady state solution, of

the energy equation showed that the interface velocity

reaches a constant value after an initial time period and

that the magnitude of the velocity increases with in-

creasing thermal supercooling. From the heat balance

equation at the solid–liquid interface, the analysis shows

that a limit on the amount of thermal supercooling in

the liquid phase exists, with a maximum Stefan number

approaching a value of 1 at quasi-steady state. The

amount of thermal supercooling in the liquid governs

the magnitude of the final velocity of the solid–liquid

interface. For both the long time and instantaneous

solutions of the energy equation, the gradient of the

temperature profile in the liquid phase increases as the

Stefan number increases.

Numerical methods were used to solve for the un-

steady temperature profile. The results from the nu-

merical analysis show that the temperature profile in the

liquid phase reaches quasi-steady state, or the long time

solution, after an initial time period. The time for the

temperature field to reach quasi-steady state increases

slightly with increasing values of the Stefan number. The

velocity of the solid–liquid interface is observed to de-

crease in time until a constant value predicted by the

long time solution, is reached.
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